ABSTRACTS
Plenary Lectures
PL1 Nanogenerators for Self-powered Sensors and Piezotronics for Smart Systems
ZHONG LIN WANG, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, USA
Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable for wireless devices to be self-powered without using battery. Nanogenerators (NGs) have been developed based on piezoelectric, trioboelectric and pyroelectric effects, aiming at building self-sufficient power sources for mico/nano-systems. The output of the nanogenerators now is high enough to drive a wireless sensor system and charge a battery for a cell phone, and they are becoming a vital technology for sustainable, independent and maintenance free operation of micro/nano-systems and mobile/portable electronics. An energy conversion efficiency of 55% and an output power density of 1200 W/m2 have been demonstrated. This technology is now not only capable of driving portable electronics, but also has the potential for harvesting wind and ocean wave energy for large-scale power application. This talk will focus on the updated progress in NGs.
For Wurtzite and zinc blend structures that have non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a strain. Such piezopotential can serve as a “gate” voltage that can effectively tune/control the charge transport across an interface/junction; electronics fabricated based on such a mechanism is coined as piezotronics, with applications in force/pressure triggered/controlled electronic devices, sensors, logic units and memory. By using the piezotronic effect, we show that the optoelectronc devices fabricated using wurtzite materials can have superior performance as solar cell, photon detector and light emitting diode. Piezotronics is likely to serve as a “mechanosensation” for directly interfacing biomechanical action with silicon based technology and active flexible electronics. This lecture will focus on the updated progress in the field and its expansion to 2D materials.
G. Zhu#, J. Chen#, T.J. Zhang, Q.S. Jing, Z.L. Wang* “Radial-arrayed rotary electrification for high-performance triboelectric generator”, Nature Communication, 5 (2014) 3456.
W.Z. Wu+, X.N. Wen+, Z.L. Wang* “Pixel-addressable matrix of vertical-nanowire piezotronic transistors for active/adaptive tactile imaging”, Science, 340 (2013) 952-957.
C.F. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang* “Micrometer-resolution electroluminescence parallel-imaging of pressure distribution using piezoelectric nanowire-LED array”, Nature Photonics, 7 (2013) 752-758.
W.Z. Wu+, L. Wang+, Y.L. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone, and Z.L. Wang “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics", Nature, 2014, DOI: 10.1038/nature13792.
PL2 Graphene Future Emerging Technology
A.C. FERRARI, Cambridge Graphene Centre, University of Cambridge, Cambridge, UK
Disruptive technologies are usually characterised by universal, versatile applications, which change many aspects of our life simultaneously, penetrating every corner of our existence. In order to become disruptive, a new technology needs to offer not incremental, but dramatic, orders of magnitude improvements. Moreover, the more universal the technology, the better chances it has for broad base success. Does graphene have a chance to become the next disruptive technology? Can graphene be the material of the 21th century? Are the properties of graphene so unique to overshadow the unavoidable inconveniences of switching to a new technology, a process usually accompanied by large R&D and capital investments? In spite of the inherent novelty associated with graphene and the lack of maturity of graphene technology, a roadmap can be envisaged, including short-term milestones, and some medium- to long-term targets, intrinsically less detailed, but potentially even more disruptive. This should guide the transition towards a technological platform underpinned by graphene, with opportunities in many fields and benefits to society.
ZHONG LIN WANG, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, USA
Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable for wireless devices to be self-powered without using battery. Nanogenerators (NGs) have been developed based on piezoelectric, trioboelectric and pyroelectric effects, aiming at building self-sufficient power sources for mico/nano-systems. The output of the nanogenerators now is high enough to drive a wireless sensor system and charge a battery for a cell phone, and they are becoming a vital technology for sustainable, independent and maintenance free operation of micro/nano-systems and mobile/portable electronics. An energy conversion efficiency of 55% and an output power density of 1200 W/m2 have been demonstrated. This technology is now not only capable of driving portable electronics, but also has the potential for harvesting wind and ocean wave energy for large-scale power application. This talk will focus on the updated progress in NGs.
For Wurtzite and zinc blend structures that have non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a strain. Such piezopotential can serve as a “gate” voltage that can effectively tune/control the charge transport across an interface/junction; electronics fabricated based on such a mechanism is coined as piezotronics, with applications in force/pressure triggered/controlled electronic devices, sensors, logic units and memory. By using the piezotronic effect, we show that the optoelectronc devices fabricated using wurtzite materials can have superior performance as solar cell, photon detector and light emitting diode. Piezotronics is likely to serve as a “mechanosensation” for directly interfacing biomechanical action with silicon based technology and active flexible electronics. This lecture will focus on the updated progress in the field and its expansion to 2D materials.
G. Zhu#, J. Chen#, T.J. Zhang, Q.S. Jing, Z.L. Wang* “Radial-arrayed rotary electrification for high-performance triboelectric generator”, Nature Communication, 5 (2014) 3456.
W.Z. Wu+, X.N. Wen+, Z.L. Wang* “Pixel-addressable matrix of vertical-nanowire piezotronic transistors for active/adaptive tactile imaging”, Science, 340 (2013) 952-957.
C.F. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang* “Micrometer-resolution electroluminescence parallel-imaging of pressure distribution using piezoelectric nanowire-LED array”, Nature Photonics, 7 (2013) 752-758.
W.Z. Wu+, L. Wang+, Y.L. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone, and Z.L. Wang “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics", Nature, 2014, DOI: 10.1038/nature13792.
PL2 Graphene Future Emerging Technology
A.C. FERRARI, Cambridge Graphene Centre, University of Cambridge, Cambridge, UK
Disruptive technologies are usually characterised by universal, versatile applications, which change many aspects of our life simultaneously, penetrating every corner of our existence. In order to become disruptive, a new technology needs to offer not incremental, but dramatic, orders of magnitude improvements. Moreover, the more universal the technology, the better chances it has for broad base success. Does graphene have a chance to become the next disruptive technology? Can graphene be the material of the 21th century? Are the properties of graphene so unique to overshadow the unavoidable inconveniences of switching to a new technology, a process usually accompanied by large R&D and capital investments? In spite of the inherent novelty associated with graphene and the lack of maturity of graphene technology, a roadmap can be envisaged, including short-term milestones, and some medium- to long-term targets, intrinsically less detailed, but potentially even more disruptive. This should guide the transition towards a technological platform underpinned by graphene, with opportunities in many fields and benefits to society.